

Professor Lisa Maher AM

The Kirby Institute, UNSW Sydney

Factors associated with a ten-fold increase in people who inject drugs initiating HCV direct acting antiviral therapies in Australia in 2016

Conflicts of Interest

Lisa Maher: nothing to declare

Coauthors:

Jenny Iversen, Beth Catlett, Philip Cunningham: nothing to declare

Gregory Dore: Advisory board member and received honorarium from Roche, Merck, Janssen, Gilead, Bristol-Myers Squibb, Abbvie. Received research grant funding from Roche, Merck, Janssen, Gilead, Bristol-Myers Squibb, Vertex, Boeringher Ingelheim, Abbvie and travel sponsorship from Roche, Merck, Janssen, Gilead, and Bristol-Myers Squibb.

Jason Grebely: is a consultant/advisor and has received research grants from Abbvie, Bristol Myers Squibb, Cepheid, Gilead, Janssen, and Merck.

Background

Hepatitis C virus (HCV) Ab sero-prevalence high at >50% among people who inject drugs (PWID) in most developed countries, including Australia

Despite a universal health care system, hepatitis C treatment uptake among Australians who inject drugs has been low historically, at 1-2%

DAA therapies listed on the Pharmaceutical Benefits Scheme (PBS) in March 2016

- → subsidized access for all Australian adults (aged ≥18 years)
- > no restrictions by disease stage, ongoing substance use or provider type
- → range of DAAs available
- → dispensing fee payable per prescription (\$38.80/\$6.30).

Aims

- Investigate recent (last 12 months) uptake of hepatitis C treatment among a large national sample of PWID in Australia in October 2016 (7 months after DAA PBS listing)
- 2) Examine factors associated with recent uptake of HCV treatment
- 3) Estimate prevalence of active infection and compare to baseline estimates collected in October 2015 (5 months prior to PBS DAA listing).

Methods

Australian NSP Survey (ANSPS):

Biobehavioural sentinel surveillance system

Annually repeated cross-sectional survey

Conducted at ~50 NSPs, all states and territories

2200-2400 respondents per annum

Dried blood spots tested for HIV and HCV antibody and HCV RNA.

ANSPS sample: HCV serology and molecular results

HCV Ab positive sample: RNA & HCV treatment

	Unweighted	Weighted
Active infection (HCV RNA detected):		
No treatment history*	223	232
Recent treatment history*	20	17
Prior treatment history*	11	12
Cleared infection (HCV RNA undetected):		
No treatment history Spontaneously cleared (21% adjusted)	81	86
Recent treatment history*	60	48
Prior treatment history Prior treatment induced clearance (2% adjusted)	9	9

^{*} n=314 (75% adjusted) assessed as eligible for treatment in the 12 months to October 2016

^{*} among those assessed as eligible for treatment

Factors associated with recent initiation of HCV treatment

	Recent treatment	No recent treatment	AOR
Age, quartiles:			
≤37 years (ref)	16 (18)	73 (82)	
38-42 years	23 (30)	54 (70)	1.89 (0.89-4.01)
43-49 years	13 (16)	66 (84)	0.76 (0.33-1.75)
≥50 years	28 (41)	41 (59)	2.84 (1.34-6.01)
Freq. of injection:			
Daily +(ref)	33 (20)	129 (80)	
<daily< td=""><td>45 (32)</td><td>97 (68)</td><td>1.99 (1.14-3.45)</td></daily<>	45 (32)	97 (68)	1.99 (1.14-3.45)
Receptive syringe sharing (last month):			
Yes (ref)	4 (7)	52 (93)	
No	75 (29)	180 (71)	4.91 (1.68-4.36)

Results

No associations p<0.10: gender, Indigenous status, born overseas, drug last injected, current engagement in OST, recent imprisonment or geographic location (state or regional/metro)

ANSPS: Viraemic prevalence 2015 and 2016

Strengths & Limitations

Strengths:

Well established surveillance mechanism, national sample

DBS simple and easy to administer \rightarrow good sensitivity and high specificity for HCV antibody and RNA testing

Capacity for future monitoring:

- → Equity of access, including among potentially marginalized subpopulations
- → Viraemic prevalence

Limitations

Initial 7 months likely captured those highly motivated to initiate treatment <50% of anti-HCV positive respondents had sufficient DBS for RNA testing

RNA testing expensive/not included in routine surveillance.

Conclusions

Demonstrated rapid and significant increase in HCV treatment initiation among PWID following unrestricted access to DAA therapies

Treatment uptake among PWID (20%) higher than among the general population of people living with chronic HCV infection (14% in 2016)

→ Reflects implementation of specific initiatives prioritising access to HCV treatment among PWID, including within opioid substitution therapy (OST), prison settings and peer-based services

Population-level declines in viraemic prevalence among PWID feasible in settings with unrestricted access to DAAs and high coverage harm reduction programs

However potentially vulnerable sub-populations of PWID at highest risk of transmission (frequent injectors and those reporting recent syringe sharing) were less likely to initiate treatment → need to continue to monitor equity of access to guide progress towards elimination goals by 2030.

Acknowledgements

Participants: NSP clients and participating NSPs throughout Australia

Collaborators: ANSPS National Advisory Group

Co-authors: Jenny Iversen, Beth Catlett, Philip Cunningham, Gregory Dore and Jason Grebely

Funders: Australian Government Department of Health.